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ABSTRACT

One of the major problems associated with the control of flexible structures is

the estimation of system states. Since the parameters of the structures are not

constant under varying loads and conditions, conventional fixed parameter state-

estimators can not be used to effectively estimate the states of the system. One

alternative is to use a state-estimator which adapts to the condition of the system.

One such estimator is the Kalman filter. This filter is a time-varying recursive

digital filter which is based upon a model of the system being measured. This filter

adapts the model according to the output of the system. Previously, the Kalman filter

has only been used in an off-line capacity due to the computation time required for

implementation. With recent advances in computer technology, it is becoming a viable

tool for use in the on-line environment. The following paper describes a distributed

Kalman filter implementation for fast estimation of the state of a flexible arm. A key

issue, is the sensor structure and initial work on a distributed sensor that could be

used with the Kalman filter is presented.

INTRODUCTION

The parameters of flexible structure systems are generally dynamic. They change

under varying load and environmental conditions. When there is a need to control such

dynamic systems, these parameters must be measured or estimated. These systems are

usually very complex and often more parameters are needed for control than can be

measured. The parameters which cannot be measured must therefore be estimated in some

manner.

With the rapid evolution of computers, the Kalman filter is becoming an excellent

tool for estimation of system parameters. Previously, this filter could only be used

in off-line applications such as filtering of laboratory data Brubaker. Now, it is

becoming useful in on-line environments for state estimation.

The Kalman filter is a time-varying digital filter which is based upon a model of

the system being studied. The filter uses signals from the system to adapt the model

and estimate system parameters. These parameters along with the measured signals can

then be used to control the system. A key issue in the use of parameter estimation is

the sensor distribution and use of appropriate sensor types. Along with this is the

data fusion issue from sensors to provide appropriate control information. Here we only

describe the estimation procedure with comments on the sensor issue. A block diagram

of the filter structure is shown in Fig. I for a single input system. For multiple

sensors, multiple filters could be deployed and data fusion done with filter outputs.
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KALMAN FILTER THEORY

The Kalman filter is a time-varying recursive digital filter which estimates the

states of a system from one or more sensor signals. The filter operates on time domain

signals using linear least squares estimation that utilizes all of the past data from

the output signals. This estimation can provide separation of signal components. These

components can be used to determine the states of the system. The Kalman filter can

also improve noise reduction on the signals under consideration [Brubaker].

The first step in the design of a Kalman filter is the choice of a linear or

linear_zed signal model that describes the signal or serves as an approximation to the

signal. One of the most flexible of these models is a polynomial. The input signal to

the filter (output from the system), z(t), is represented by a polynomial of order m.

At time t = nT, where T is the sampling period of the system, the state vector for the

system is given by

z(n_ -

z

dz

dt

d mz
t-nT

(I)

Here, the system is being represented in canonical state-space form with the components

of the state vector being the derivatives of the polynomial model. When a system is to

be represented in a different state-space form, a linear transformation can be performed

to change the state vector to the desired form.

To use the polynomial model for the Kalman filter, the state vector must be

redefined using a Taylor Series representation for each element of z(nT). The resulting
state vector is

x(nT) -

z

x --

T m dz m

m! dtm
t-nT

(2)

The state of the system at t = (n+h)T can now be described in terms of the state at t=nT

by the relationship

x [ (n+h) T] -_ (h) x [nT] (3)
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where @[h] is the following (m+l) X (m+l) state transition matrix:

I h .. h _

0 1 .. m.hm-i

(I,[h] - . . ..

0 0 .. 1

(4)

The filter is implemented by first producing forecasts of the estimate

xl (nT) - (_(1)x[ (n-1) T] (5)

and covariance matrix

S1(nT) - @(1)S[(n-1)T]@Z(1) + Q

at t = nT using the previous estimate, x[(n-l)T], and covariance matrix, S[(n-I)T].

These forecasts are obtained by using the state transition relationship given in (4).

The matrix Q is the covariance of the driving noise. It allows the designer to "fade"

the effects of past inputs. The covariance forecast is then used to calculate the

Kalman Gain Matrix,

K(nT) - Si (nT)Mr[g 2 + MSI (nT)M r]-i (7)

The term o z is the variance of the measurement noise. The matrix M is a row matrix

which relates the measurable state variables to the actual measurements. For this

filter, the measurements are assumed to be components of the state-vector z(Nt) given

in (i). Therefore, M relates the estimate vector x(Nt) given in (2) to the measured

components of z(Nt). The Kalman Gain Matrix is then used to obtain the covariance

estimate,

S(nT) - [I - K(nT)M]S 1(nT) (8)

and the state-vector estimate,

x(nT) - x i (nT) + K(nT) [y(nT) - Mx i(nT)] (9)

In (9), the term y(nT) is the data measurement vector at t=Nt which consists of the

measured components of z(nT). Equations (i) through (9) are the basis for the Kalman

filter. A complete derivation for these equations can be found in many texts for
example, Liebelt and Meditch.
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KALMAN FILTER DESIGN

With the choice of a polynomial model for the input signal, the design of a Kalman

filter involves the determination of a few key parameters. These parameters are set

according to the system and design specifications.

The first group of parameters which must be determined are associated directly

with the properties of the system. The first is the sampling period, T. This period

is usually set according to the nyquist rate,

fs - I__ k 2f m (I0)
T

where fm is the maximum frequency of the bandlimited input signal and fs is the

sampling frequency.

The second parameter is the variance of the sensor noise, o z . This parameter is

a property only of the sensors which are employed. Another term which is determined

from the sensors which are utilized is the Data Measurement Vector. This is the number

of terms in the state vector of equation I which can be directly measured.

The remaining filter parameters are determined using both design and system

specifications. The order of the polynomial model must be set according to the sampling

period and the angular velocity of the input signal oscillations. The calculation time

of the filter is larger for higher orders. The order must be small enough to allow the

calculation time to be smaller than the sampling period. On the other hand, the order

must be large enough to allow the filter to track the input signal well.

The key design parameter of the Kalman filter is the covariance matrix of the

driving noise, Q. For this paper, the driving noise is assumed to be uncorrelated white

noise. This simplifies the matrix Q to a diagonal matrix. After testing different

forms for the Q matrix, little difference was found. Therefore, the matrix Q was taken

to be the identity matrix times a constant, f.

The constant f is known as the fading factor. This term determines how the filter

will handle past data. When f = O, the filter is simply an expanding memory filter.

All past data is used evenly to calculate the present estimate. This will cause the

variance of the estimate and its covariance matrix to decrease to zero as time

increases, but deterministic errors will become large. If the fading factor is greater

than zero, more emphasis is placed on the present sample than on past samples. Thus,

the past samples are faded from the filter's memory. Larger values of f cause past

samples to fade more quickly. The fading of past samples causes the Kalman filter to

have a much smaller deterministic error, but the variance of the estimate and its

covariance approach the values at the input.

One way to minimize the deterministic error associated with a small fading factor

is to periodically reinitialize the Kalman filter. This requires establishing a

relationship between the frequency of initialization and the fading factor. The fading

factor should be the minimum value for which the deterministic error just prior to

reinitialization is within specifications. This value will cause the Kalman filter to

provide maximum noise reduction while meeting deterministic error specifications.
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To reinitialize the Kalman filter, a nonrecursive filter is used. This filter

utilizes a window of the past samples to estimate the state vector and its covariance.

These parameters are then passed to the Kalman filter.

DESIGN EXAMPLE

The Kalman filter was tested in two separate operating conditions. The first was

with data acquired from the hub of the flexible arm at CSU. The second test was with

an eighth order model of the flexible arm. This test included the simulation of the

system with control in a closed-loop environment. A program has been developed which

allows the design and testing of these and other filter structures. The results of

these experiments are discussed in the following paragraphs.

The data acquired from the hub of the flexible arm was position information

sampled at a rate of i00 samples per second. A polynomial model of order 3 was required

to accurately represent the position of the hub. Since velocity information was not

available, a Data Measurement Vector of one was used. The variance of the sensor noise

was arbitrarily set at 10 .4 . The filter was reinitialized every i00 samples, I second,

and a fading factor of 10 .9 was used.

The outputs of the filter are shown in Figs. 2 through 5. Figure 2 demonstrates

the ability of the filter to estimate the position signal. Figure 3 displays the

estimate of the velocity. Figures 4 and 5 show the estimates of the second and third

derivatives of the position signal. No actual data was available for the second and

third derivatives. Therefore, the accuracy of these estimates could not be determined.

The second test of the filter involved an eighth order simulation of the flexible

arm with the filter outputs used as control feedback. The simulation provided the

position of the tip as input to the filter. A third order polynomial model was used for

the Kalman filter. The variance of the sensor noise was taken to be 10 .4 and the fading

factor was 5x10 -12. The feedback control was implemented as simple proportional position

only negative feedback. The feedback gain was set to 2.5

The results of this simulation are shown in Figs. 6 through 9. Figure 6 shows a

comparison of the position signal before and after the Kalman filter. Figures 7 through

9 show the first, second and third derivatives of position.

FUTURE WORK

Future work on the Kalman filter consists of implementation issues. A good design

method has been set forward, but many implementation issues have not been addressed.

The major implementation problem comes with the selection of hardware to run the Kalman

filter. This hardware must consist of a microprocessor which is fast enough to meet the

sampling rate, but inexpensive enough to make its use feasible. Another major problem

comes in the sensors which will provide state information for the Kalman filter. These

sensors must be selected for each application such that they provide accurate

information with a low noise level. A final problem which must be addressed is a method

to download the Kalman filter program to the hardware. This downloading could be done

by the design program with the appropriate interfaces. After these problems have been

resolved, the Kalman filter will provide a very effective state estimator in many
applications.
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A NEW SENSOR

Within the past few months our group has designed and performed initial tests on

a distributed fiber optic sensor. Here, the fiber is connected to a flexible structure

over a one meter length. The fiber is excited with a milliwatt laser and the defraction

pattern out of the end is used to provide an estimate of displacement. Figures I0 and

II illustrate the results via change in the output pattern. For implementation a CCD

memory could be used to store the pattern and subsequently the information is driven

into a computer where basic pattern recognition techniques are used to generate good

estimates of displacement. A well designed system can also be used to estimate

velocity. Within the context of this paper, a two-dimensional Kalman filter can be used

to estimate parameters. Note that in Figs. I0 and ii, black and white images are shown.

In a physical system color will be used.

CONCLUSIONS

An investigation has been started into the usefulness of the Kalman filter as a

state estimator in an on-line environment. Previously, the filter has been used

strictly in an off-line capacity to do data analysis. With the advances in computing

speed, the filter is now becoming feasible as a real-time state estimator.

A Kalman filter based on a polynomial state-space model has been tested on

flexible structure data. This filter has proven to give excellent state-estimation and

noise reduction in such systems. The polynomial model provides for a very easy design

of the filter. Do to the ease of design, a program has been written to provide

assistance in the design process.

The Kalman filter design program provides a very straight forward design

methodology with an interactive graphics approach. This approach allows the designer

to see how well the filter works and the effects of changes in the design parameters.

When the program is combined with the appropriate hardware, a very effective state

estimation tool will become available for use in the real-time environment.
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Figure 1. Block Diagram of Kalman Filter System.

Note: For multiple sensors, multiple distributed Kalman

Filters could be employed with data fusion a key, important and
still a research issue.
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Figure 10. Fiber-Optic Output With Zero Beam Displacements

Figure l]. Fiber Optic Output With 5 cm Displacement
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